

PubPharm: from informatics research to search tools for pharmacyspecific literature

Draheim, C.¹; Keßler, K.¹; Kroll, H.²; Wawrzinek, J.²; Wulle, S.¹; Balke, W.-T.²; Stump, K.¹ ¹ Universitätsbibliothek & ² Institut für Informationssysteme | Technische Universität Braunschweig Fachinformationsdienst (FID) Pharmazie - PubPharm | pubpharm@tu-braunschweig.de | Phone +49 (0) 531 / 391-5046 or -5027

PubPharm Search Platform

Unique Characteristics

PubPharm is a free pharmacy-specific search platform. • PubPharm contains more than 55 million references • Including 29 million Medline (PubMed) publications

- Content beyond Medline
 - Journal articles from adjacent scientific disciplines (e.g. chemistry)
 - Pharmaceutical books
 - (e-books, dissertations)
 - Conference papers
 - Information on clinical trials
- Full text access to more than 50 journals (licensed by FID Pharmazie)
 - 48 Campus licences for universities with pharmaceutical institutes
 - Supported by DFG funding

• For all references in PubPharm: Availability check (personalised based on location)

• Structure search including substructure and similarity search • Filter functions

Innovative Search Tools

Development of Search Tools

Linking semantic fingerprints of literature – from simple neural embeddings towards contextualized pharmaceutical networks

Artificial intelligence (AI) can be used to predict new drug-disease associations (DDA)

- Problem: How to explain DDA predicted by AI?
- Hypothesis: Network views can help understand complex associations
- Result: Network views of all related (and predicted) DDA

Process Overview

AI learning on documents (e.g. PubMed)

Learn DDA and build network view

Search for active substance and explore learned network view

Semantic facettation in pharmaceutical collections using deep learning for active substance contextualization

Process Overview

When searching for a drug substance, PubPharm returns lists of semantically related substances, diseases and genes.

References:

Wawrzinek J, Balke W-T. Semantic Facettation in Pharmaceutical Collections Using Deep Learning for Active Substance Contextualization. In International Conference on Asian Digital Libraries. Springer, Cham, 2017; 41-53. Stump K, Balke W-T, Keßler K, Krüger A T, Wawrzinek J, Wulle S. PubPharm – Der Fachinformationsdienst Pharmazie. PHARMAKON 2018; 6(4):260267.

www.pubpharm.de

DFG Deutsche Forschungsgemeinschaft